104 research outputs found

    Orbital stability of periodic waves in the class of reduced Ostrovsky equations

    Get PDF
    Periodic travelling waves are considered in the class of reduced Ostrovsky equations that describe low-frequency internal waves in the presence of rotation. The reduced Ostrovsky equations with either quadratic or cubic nonlinearities can be transformed to integrable equa- tions of the Klein–Gordon type by means of a change of coordinates. By using the conserved momentum and energy as well as an additional conserved quantity due to integrability, we prove that small-amplitude periodic waves are orbitally stable with respect to subharmonic perturbations, with period equal to an integer multiple of the period of the wave. The proof is based on construction of a Lyapunov functional, which is convex at the periodic wave and is conserved in the time evolution. We also show numerically that convexity of the Lyapunov functional holds for periodic waves of arbitrary amplitudes

    Extinction of multiple shocks in the modular Burgers’ equation

    Get PDF
    We consider multiple shock waves in the Burgers’ equation with a modular advection term. It was previously shown that the modular Burgers’ equation admits a traveling viscous shock with a single interface, which is stable against smooth and exponentially localized perturbations. In contrast, we suggest in the present work with the help of energy estimates and numerical simulations that the evolution of shock waves with multiple interfaces leads to finite-time coalescence of two consecutive interfaces. We formulate a precise scaling law of the finite-time extinction supported by the interface equations and by numerical simulation

    Moving gap solitons in periodic potentials

    Full text link
    We address existence of moving gap solitons (traveling localized solutions) in the Gross-Pitaevskii equation with a small periodic potential. Moving gap solitons are approximated by the explicit localized solutions of the coupled-mode system. We show however that exponentially decaying traveling solutions of the Gross-Pitaevskii equation do not generally exist in the presence of a periodic potential due to bounded oscillatory tails ahead and behind the moving solitary waves. The oscillatory tails are not accounted in the coupled-mode formalism and are estimated by using techniques of spatial dynamics and local center-stable manifold reductions. Existence of bounded traveling solutions of the Gross--Pitaevskii equation with a single bump surrounded by oscillatory tails on a finite large interval of the spatial scale is proven by using these technique. We also show generality of oscillatory tails in other nonlinear equations with a periodic potential.Comment: 22 pages, 2 figure

    Exact vortex solutions of the complex sine-Gordon theory on the plane

    Full text link
    We construct explicit multivortex solutions for the first and second complex sine-Gordon equations. The constructed solutions are expressible in terms of the modified Bessel and rational functions, respectively. The vorticity-raising and lowering Backlund transformations are interpreted as the Schlesinger transformations of the fifth Painleve equation.Comment: 10 pages, 1 figur

    Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential

    Full text link
    We address a two-dimensional nonlinear elliptic problem with a finite-amplitude periodic potential. For a class of separable symmetric potentials, we study the bifurcation of the first band gap in the spectrum of the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to describe this bifurcation. The coupled-mode equations are derived by the rigorous analysis based on the Fourier--Bloch decomposition and the Implicit Function Theorem in the space of bounded continuous functions vanishing at infinity. Persistence of reversible localized solutions, called gap solitons, beyond the coupled-mode equations is proved under a non-degeneracy assumption on the kernel of the linearization operator. Various branches of reversible localized solutions are classified numerically in the framework of the coupled-mode equations and convergence of the approximation error is verified. Error estimates on the time-dependent solutions of the Gross--Pitaevskii equation and the coupled-mode equations are obtained for a finite-time interval.Comment: 32 pages, 16 figure

    Stability of Spatial Optical Solitons

    Full text link
    We present a brief overview of the basic concepts of the soliton stability theory and discuss some characteristic examples of the instability-induced soliton dynamics, in application to spatial optical solitons described by the NLS-type nonlinear models and their generalizations. In particular, we demonstrate that the soliton internal modes are responsible for the appearance of the soliton instability, and outline an analytical approach based on a multi-scale asymptotic technique that allows to analyze the soliton dynamics near the marginal stability point. We also discuss some results of the rigorous linear stability analysis of fundamental solitary waves and nonlinear impurity modes. Finally, we demonstrate that multi-hump vector solitary waves may become stable in some nonlinear models, and discuss the examples of stable (1+1)-dimensional composite solitons and (2+1)-dimensional dipole-mode solitons in a model of two incoherently interacting optical beams.Comment: 34 pages, 9 figures; to be published in: "Spatial Optical Solitons", Eds. W. Torruellas and S. Trillo (Springer, New York

    Gap solitons in Bose-Einstein condensates in linear and nonlinear optical lattices

    Full text link
    Properties of localized states on array of BEC confined to a potential, representing superposition of linear and nonlinear optical lattices are investigated. For a shallow lattice case the coupled mode system has been derived. The modulational instability of nonlinear plane waves is analyzed. We revealed new types of gap solitons and studied their stability. For the first time a moving soliton solution has been found. Analytical predictions are confirmed by numerical simulations of the Gross-Pitaevskii equation with jointly acting linear and nonlinear periodic potentials.Comment: 9 pages, 14 figure

    An instability criterion for nonlinear standing waves on nonzero backgrounds

    Full text link
    A nonlinear Schr\"odinger equation with repulsive (defocusing) nonlinearity is considered. As an example, a system with a spatially varying coefficient of the nonlinear term is studied. The nonlinearity is chosen to be repelling except on a finite interval. Localized standing wave solutions on a non-zero background, e.g., dark solitons trapped by the inhomogeneity, are identified and studied. A novel instability criterion for such states is established through a topological argument. This allows instability to be determined quickly in many cases by considering simple geometric properties of the standing waves as viewed in the composite phase plane. Numerical calculations accompany the analytical results.Comment: 20 pages, 11 figure

    Bifurcations and stability of gap solitons in periodic potentials

    Full text link
    We analyze the existence, stability, and internal modes of gap solitons in nonlinear periodic systems described by the nonlinear Schrodinger equation with a sinusoidal potential, such as photonic crystals, waveguide arrays, optically-induced photonic lattices, and Bose-Einstein condensates loaded onto an optical lattice. We study bifurcations of gap solitons from the band edges of the Floquet-Bloch spectrum, and show that gap solitons can appear near all lower or upper band edges of the spectrum, for focusing or defocusing nonlinearity, respectively. We show that, in general, two types of gap solitons can bifurcate from each band edge, and one of those two is always unstable. A gap soliton corresponding to a given band edge is shown to possess a number of internal modes that bifurcate from all band edges of the same polarity. We demonstrate that stability of gap solitons is determined by location of the internal modes with respect to the spectral bands of the inverted spectrum and, when they overlap, complex eigenvalues give rise to oscillatory instabilities of gap solitons.Comment: 18 pages, 11 figures; updated bibliograph

    Breakup of self-guided light beams into X wave trains

    Get PDF
    Relaxation of the nonlinear spatiotemporal dynamics of cylindrically symmetric SchrÄodinger solitons due to their temporal modulation instability leads to soliton break-up into a train of X waves
    • …
    corecore